Jump to content

Welcome to the new Traders Laboratory! Please bear with us as we finish the migration over the next few days. If you find any issues, want to leave feedback, get in touch with us, or offer suggestions please post to the Support forum here.

  • Welcome Guests

    Welcome. You are currently viewing the forum as a guest which does not give you access to all the great features at Traders Laboratory such as interacting with members, access to all forums, downloading attachments, and eligibility to win free giveaways. Registration is fast, simple and absolutely free. Create a FREE Traders Laboratory account here.

derek2209

"BB-MACD" Created by KelvinHand Using Ehlers Periodogram for the Dominant Cycle

Recommended Posts

Hi

 

I would like to Plot the "BB-MACD" Created by KelvinHand

for a Variable Time Period Dominant Cycle as

calculated by "Ehlers Autocorrelation Periodogram" code below

 

I have only able to plot the "BB-MACD" Created by KelvinHand

using the fixed time period of the last value of "Ehlers Autocorrelation Periodogram"

 

Hoping that you can help

Thanking you in advance

 

Best regards

 

Derek

//////////////////////////////////////////////////////

 

//Ehlers Autocorrelation Periodogram for Amibroker (AFL)

/*
Autocorrelation Periodogram
2013 John F. Ehlers
*/

SetBarsRequired(sbrAll);

LPeriod = Param("Low-pass Period", 10, 3, 20);
HPeriod = Param("High-pass Period", 48, 22, 80);
IsPlotHeatMap = ParamToggle("Show HeatMap?", "No|Yes", 1);
IsPlotDominantCycle = ParamToggle("Show Dom. Cycle?", "No|Yes");

pi=3.1415926;

function RoofingFilter(lpPeriod, hpPeriod)
{
alpha1 = (cos(0.707*2*pi / hpPeriod) + sin(0.707*2*pi / hpPeriod) - 1) / cos(0.707*2*pi / hpPeriod);
a1 = exp(-1.414*pi / lpPeriod);
b1 = 2*a1*cos(1.414*pi / lpPeriod);
c2 = b1;
c3 = -a1*a1;
c1 = 1 - c2 - c3;

HP = Close;
Filt = HP;

for(i = 2; i < BarCount; i++)
{
	HP[i] = ((1 - alpha1 / 2)^2)*(Close[i] - 2*Close[i-1] + Close[i-2]) + 2*(1 - alpha1)*HP[i-1] - ((1 - alpha1)^2)*HP[i-2];
	Filt[i] = c1*(HP[i] + HP[i-1]) / 2 + c2*Filt[i-1] + c3*Filt[i-2];
}

return Filt;
}

function AGC(lowerCutoff, higherCutoff, acceptableSlope)
{	
factor = 0;
accSlope = -acceptableSlope;	//acceptableSlope = 1.5 dB
halfLC = lowerCutoff / 2;
halfHC = higherCutoff / 2;
ratio = 10^(accSlope/20);
if(halfHC - halfLC > 0)
	factor = ratio^(1/(halfHC - halfLC));
return factor;
}

function AutocorrelationPeriodogram(data, isHeatMap, isDomCyc)
{
avgLength = 3;
dominantCycle = 0;

//Pearson correlation for each value of lag
for(lag = 0; lag <= 48; lag++)
{
	//Set the average length as M
	M = avgLength;
	if(avgLength == 0)
		M = lag;
	//Initialize correlation sums
	Sx = 0;
	Sy = 0;
	Sxx = 0;
	Syy = 0;
	Sxy = 0;
	//Advance samples of both data streams and sum Pearson components
	for(count = 0; count <= M-1; count++)
	{
		X = Ref(data, -count);
		Y = Ref(data, -(lag + count));
		Sx += X;
		Sy += Y;
		Sxx += X^2;
		Syy += Y^2;
		Sxy += X*Y;
	}
	var1 = (M*Sxx - Sx^2)*(M*Syy - Sy^2);
	VarSet("corr" + lag, IIf(var1 > 0, (M*Sxy - Sx*Sy)/sqrt(var1), 0));	//Compute correlation for each value of lag
	//VarSet("corrScale" + lag, IIf(var1 > 0, 0.5*((M*Sxy - Sx*Sy)/sqrt(var1) + 1), 0));	//Scale each correlation to range between 0 and 1
}

/*//Plot as a Heatmap (for scale each correlation to range between 0 and 1)
for(period = 3; period <= 48; period++)
{
	corr = VarGet("corrScale" + period);
	Red = IIf(corr > 0.5, 255*(2 - 2*corr), 255);
	Green = IIf(corr > 0.5, 255, 2*255*corr);
	PlotOHLC( period-1, period-1, period, period, "", ColorRGB( Red, Green, 0 ), styleCloud | styleNoLabel);
}*/

/*
	The DFT is accomplished by correlating the autocorrelation at each value of lag with the cosine and sine of each period of interest. 
	The sum of the squares of each of these values represents the relative power at each period.
*/
for(period = 10; period <= 48; period++)
{
	cosinePart = 0;
	sinePart = 0;

	for(n = 3; n <= 48; n++)
	{
		cosinePart += VarGet("corr" + n)*cos(2*pi*n / period);
		sinePart += VarGet("corr" + n)*sin(2*pi*n / period);
	}
	VarSet("sqSum" + period, cosinePart^2 + sinePart^2);
}

//EMA is used to smooth the power measurement at each period
for(period = 10; period <= 48; period++)
	VarSet("r" + period, AMA((VarGet("sqSum" + period))^2, 0.2));

//Find Maximum Power Level for Normalization
K = AGC(10, 48, 1.5);
for(period = 10; period <= 48; period++)
{
	if(period == 10)
		VarSet("maxPwr", 0);		
	VarSet("maxPwr", IIf(VarGet("r" + period) > VarGet("maxPwr"), K*VarGet("r" + period), VarGet("maxPwr")));
}

//Normalization power
for(period = 10; period <= 48; period++)
	VarSet("pwr" + period, VarGet("r" + period)/VarGet("maxPwr"));

//Compute the dominant cycle using the CG of the spectrum
Spx = 0;
Sp = 0;
for(period = 10; period <= 48; period++)
{
	Spx += IIf(VarGet("pwr" + period) >= 0.5,  period*VarGet("pwr" + period), 0);
	Sp += IIf(VarGet("pwr" + period) >= 0.5, VarGet("pwr" + period), 0);
}
dominantCycle = IIf(Sp != 0, Spx / Sp, 0);
dominantCycle =(dominantCycle);

if(isHeatMap)
{
	//Plot as a Heatmap
	for(period = 10; period <= 48; period++)
	{
		pwr = VarGet("pwr" + period);
		Red = IIf(pwr > 0.5, 255, 2*255*pwr);
		Green = IIf(pwr > 0.5, 255*(2*pwr - 1), 0);
		PlotOHLC( period-1, period-1, period, period, "", ColorRGB( Red, Green, 0 ), styleCloud | styleNoLabel, Null, Null, 0, 0);
	}
}

if(isDomCyc)
	Plot(LastValue(dominantCycle,1), "Dominant Cycle", colorBlue, styleThick, Null, Null, 0, 1);

pds=LastValue(dominantCycle,1);

//"BB-MACD")    Created by KelvinHand

SetChartBkColor( ParamColor("background",colorBlack) ); 
A1=EMA(C,pds/2)-EMA(C,pds); 
BBtop=BBandTop(A1,10,1); 
BBbot=BBandBot(A1,10,1);
Color=IIf(a1<0 AND a1>Ref(a1,-1), colorLime,IIf(a1>0 AND a1>Ref(a1,-1),colorBrightGreen,IIf(a1>0 AND a1<Ref(a1,-1),colorCustom12,colorRed)));

Plot(a1,"MACD",color,styleThick+styleLine);
Plot(BBtop,"BBtop",colorWhite,styleDashed);
Plot(BBbot,"BBbot",colorWhite,styleDashed);
Plot(0,"",colorWhite,1);

AddColumn(round(dominantCycle), " DominantCycle", 2.0 ,  colorRed, colorLightYellow,50) ;


return dominantCycle;


}

filtData = RoofingFilter(LPeriod, HPeriod);
AutocorrelationPeriodogram(filtData, IsPlotHeatMap, IsPlotDominantCycle);

]

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.


×
×
  • Create New...

Important Information

By using this site, you agree to our Terms of Use.